Transferable Deep Features for Keyword Spotting
نویسندگان
چکیده
منابع مشابه
Transferable Deep Features for Keyword Spotting
Deep features, defined as the activations of hidden layers of a neural network, have given promising results applied to various vision tasks. In this paper, we explore the usefulness and transferability of deep features, applied in the context of the problem of keyword spotting (KWS). We use a state-ofthe-art deep convolutional network to extract deep features. The optimal parameters concerning...
متن کاملDeep Features for Text Spotting
The goal of this work is text spotting in natural images. This is divided into two sequential tasks: detecting words regions in the image, and recognizing the words within these regions. We make the following contributions: first, we develop a Convolutional Neural Network (CNN) classifier that can be used for both tasks. The CNN has a novel architecture that enables efficient feature sharing (b...
متن کاملDeep Residual Learning for Small-Footprint Keyword Spotting
We explore the application of deep residual learning and dilated convolutions to the keyword spotting task, using the recently-released Google Speech Commands Dataset as our benchmark. Our best residual network (ResNet) implementation significantly outperforms Google’s previous convolutional neural networks in terms of accuracy. By varying model depth and width, we can achieve compact models th...
متن کاملMorphological Segmentation for Keyword Spotting
• We explore the impact of morphological segmentation on Keyword Spotting (KWS). ! • Handling out-of-vocabulary (OOV) words is a major challenge in KWS we aim to alleviate this problem by utilizing sub-word units.! • We augment a state-of-the-art KWS system with subword units derived from supervised and unsupervised morphological segmentations, and compare with phonetic and syllabic segmentatio...
متن کاملLearning Transferable Features with Deep Adaptation Networks
Recent studies reveal that a deep neural network can learn transferable features which generalize well to novel tasks for domain adaptation. However, as deep features eventually transition from general to specific along the network, the feature transferability drops significantly in higher layers with increasing domain discrepancy. Hence, it is critical to formally reduce the dataset bias and e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings
سال: 2018
ISSN: 2504-3900
DOI: 10.3390/proceedings2020089